On safe tractable approximations of chance constraints

نویسنده

  • Arkadi Nemirovski
چکیده

A natural way to handle optimization problem with data affected by stochastic uncertainty is to pass to a chance constrained version of the problem, where candidate solutions should satisfy the randomly perturbed constraints with probability at least 1− . While being attractive from modeling viewpoint, chance constrained problems “as they are” are, in general, computationally intractable. In this survey paper, we overview several simulation-based and simulation-free computationally tractable approximations of chance constrained convex programs, primarily, those of chance constrained Linear, Conic Quadratic and Semidefinite Programming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Safe Tractable Approximations of Chance-Constrained Linear Matrix Inequalities

In the paper we consider the chance-constrained version of an affinely perturbed linear matrix inequality (LMI) constraint, assuming the primitive perturbations to be independent with light-tail distributions (e.g., bounded or Gaussian). Constraints of this type, playing a central role in chance-constrained linear/conic quadratic/semidefinite programming, are typically computationally intractab...

متن کامل

Linear Matrix Inequalities with Stochastically Dependent Perturbations and Applications to Chance-Constrained Semidefinite Optimization

The wide applicability of chance–constrained programming, together with advances in convex optimization and probability theory, has created a surge of interest in finding efficient methods for processing chance constraints in recent years. One of the successes is the development of so–called safe tractable approximations of chance–constrained programs, where a chance constraint is replaced by a...

متن کامل

On Tractable Approximations of Randomly Perturbed Convex Constraints

We consider a chance constraint Prob{ξ : A(x, ξ) ∈ K} ≥ 1 − 2 (x is the decision vector, ξ is a random perturbation, K is a closed convex cone, and A(·, ·) is bilinear). While important for many applications in Optimization and Control, chance constraints typically are “computationally intractable”, which makes it necessary to look for their tractable approximations. We present these approximat...

متن کامل

Optimization with uncertain data

6 Chance constraints and the choice of uncertainty sets 15 6.1 Value at risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.2 Safe convex approximations for chance constraints . . . . . . . . . . . . . . . 17 6.3 Tightest convex bounds and conditional value at risk . . . . . . . . . . . . . 18 6.4 Analytic approximation using moment generating functions . . . . . ....

متن کامل

Distributionally robust chance constraints for non-linear uncertainties

This paper investigates the computational aspects of distributionally robust chance constrained optimization problems. In contrast to previous research that mainly focused on the linear case (with a few exceptions discussed in detail below), we consider the case where the constraints can be non-linear to the decision variable, and in particular to the uncertain parameters. This formulation is o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2012